应用开发

关于高效使用Python字典的清单

时间:2010-12-5 17:23:32  作者:应用开发   来源:人工智能  查看:  评论:0
内容摘要:字典(dict)对象是 Python 最常用的数据结构,社区曾有人开玩笑地说:"Python企图用字典装载整个世界",字典在Python中的重要性不言而喻,这里整理了几个关于高效使用字典的清单,希望P

字典(dict)对象是关于高效 Python 最常用的数据结构,社区曾有人开玩笑地说:"Python企图用字典装载整个世界",使用字典在Python中的字典重要性不言而喻,这里整理了几个关于高效使用字典的清单清单,希望Python开发者可以在日常应用开发中合理利用,关于高效让代码更加 Pythonic。使用

1、字典用 in 关键字检查 key 是清单否存在

Python之禅中有一条开发哲学是:

There should be one-- and preferably only one --obvious way to do it.

尽量找一种,***是关于高效唯一种显而易见的解决方案。Python2 中判断某个 key 是使用否存在字典中可使用 has_key 方法,另外一种方式是字典使用 in 关键字。但是清单强烈推荐使用后者,因为 in 的关于高效处理速度更快,另外一个原因是使用 has_key 这个方法在 Python3 被移除了,要想同时兼容py2和py3两个版本的字典代码,用 in 是***的选择。

bad

d = { name: python}  if d.has_key(name):     pass 

good

if name in d:     pass 

2、用 get 获取字典中的源码库

关于获取字典中的值,一种简单的方式就是用 d[x] 访问该元素,但是这种情况在 key 不存在的情况下会报 KeyError 错误,当然你可以先用 in 操作检查 key 是否在字典中再获取,不过这种方式不符合 Python 之禅中说的:

Simple is better than complex. Flat is better than nested.

好的代码应该是简单易懂的,扁平的代码结构更加可读。我们可以使用 get 方法来代替 if ... else

bad

d = { name: python} if name in d:     print(d[hello]) else:     print(default) 

good

print(d.get("name", "default")) 

3、用 setdefault 为字典中不存在的 key 设置缺省值

data = [         ("animal", "bear"),         ("animal", "duck"),         ("plant", "cactus"),         ("vehicle", "speed boat"),         ("vehicle", "school bus")     ] 

在做分类统计时,希望把同一类型的数据归到字典中的某种类型中,比如上面代码,把相同类型的事物用列表的形式重新组装,得到新的字典

groups = { } >>>  { plant: [cactus],   animal: [bear, duck],   vehicle: [speed boat, school bus] 

普通的方式就是先判断 key 是否已经存在,如果不存在则要先用列表对象进行初始化,服务器托管再执行后续操作。而更好的方式就是使用字典中的 setdefault 方法。

bad

for (key, value) in data:     if key in groups:         groups[key].append(value)     else:         groups[key] = [value] 

good

groups = { } for (key, value) in data:     groups.setdefault(key, []).append(value) 

setdefault 的作用是:

如果 key 存在于字典中,那么直接返回对应的值,等效于 get 方法 如果 key 不存在字典中,则会用 setdefault 中的第二个参数作为该 key 的值,再返回该值。

4、用 defaultdict 初始化字典对象

如果不希望 d[x] 在 x 不存在时报错,除了在获取元素时使用 get 方法之外,另外一种方式是用 collections 模块中的 defaultdict,在初始化字典的时候指定一个函数,其实 defaultdit 是 dict 的子类。

from collections import defaultdict  groups = defaultdict(list) for (key, value) in data:     groups[key].append(value) 

当 key 不存在于字典中时,list 函数将被调用并返回一个空列表赋值给 d[key],这样一来,你就不用担心调用 d[k] 会报错了。

5、用 fromkeys 将列表转换成字典

keys = { a, e, i, o, u } value = [] d = dict.fromkeys(keys, value) print(d) >>> { i: [], u: [], e: [],   a: [], o: []} 

6、用字典实现 switch ... case 语句

Python 中没有 switch ... case 语句,云南idc服务商这个问题Python之父龟叔表示这个语法过去没有,现在没有,以后也不会有。因为Python简洁的语法完全可以用 if ... elif 实现。如果有太多的分支判断,还可以使用字典来代替。

if arg == 0:     return zero elif arg == 1:     return one elif arg == 2:     return "two" else:     return "nothing" 

good

data = {      0: "zero",     1: "one",     2: "two", } data.get(arg, "nothing") 

7、使用 iteritems 迭代字典中的元素

python提供了几种方式迭代字典中的元素,***种是使用 items 方法:

d = {      0: "zero",     1: "one",     2: "two", } for k, v in d.items():     print(k, v) 

items 方法返回的是(key ,value)组成的列表对象,这种方式的弊端是迭代超大字典的时候,内存瞬间会扩大两倍,因为列表对象会一次性把所有元素加载到内存,更好的方式是使用 iteritems

for k, v in d.iteritems():     print(k, v) 

iteritems 返回的是迭代器对象,迭代器对象具有惰性加载的特性,只有真正需要的时候才生成值,这种方式在迭代过程中不需要额外的内存来装载这些数据。注意 Python3 中,只有 items 方法了,它等价于 Python2 中的 iteritems,而 iteritems 这个方法名被移除了。

8、使用字典推导式

推导式是个绝妙的东西,列表推导式一出,map、filter等函数黯然失色,自 Python2.7以后的版本,此特性扩展到了字典和集合身上,构建字典对象无需调用 dict 方法。

bad

numbers = [1,2,3] d = dict([(number,number*2) for number in numbers]) 

good

numbers = [1, 2, 3] d = { number: number * 2 for number in numbers} 
copyright © 2025 powered by 益强资讯全景  滇ICP备2023006006号-31sitemap