域名

从前序及中序与后序遍历序列构造二叉树登场!

时间:2010-12-5 17:23:32  作者:人工智能   来源:人工智能  查看:  评论:0
内容摘要:看完本文,可以一起解决如下两道题目从中序与后序遍历序列构造二叉树 从前序与中序遍历序列构造二叉树 从中序与后序遍历序列构造二叉树题目地址:https://leetcode-

看完本文,从前叉树可以一起解决如下两道题目

从中序与后序遍历序列构造二叉树 从前序与中序遍历序列构造二叉树

从中序与后序遍历序列构造二叉树题

目地址:https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/

根据一棵树的序及序列中序遍历与后序遍历构造二叉树。

注意: 你可以假设树中没有重复的中序元素。

例如,后序给出

中序遍历 inorder = [9,遍历3,15,20,7] 后序遍历 postorder = [9,15,7,20,3] 返回如下的二叉树:

思路

首先回忆一下如何根据两个顺序构造一个唯一的二叉树,相信理论知识大家应该都清楚,构造就是登场以 后序数组的最后一个元素为切割点,先切中序数组,从前叉树根据中序数组,序及序列反过来在切后序数组。中序一层一层切下去,后序每次后序数组最后一个元素就是遍历节点元素。

如果让我们肉眼看两个序列,构造画一颗二叉树的登场话,应该分分钟都可以画出来。从前叉树

流程如图:

从中序与后序遍历序列构造二叉树

那么代码应该怎么写呢?

说到一层一层切割,就应该想到了递归。

来看一下一共分几步:

第一步:如果数组大小为零的话,说明是空节点了。 第二步:如果不为空,那么取后序数组最后一个元素作为节点元素。 第三步:找到后序数组最后一个元素在中序数组的位置,作为切割点 第四步:切割中序数组,源码下载切成中序左数组和中序右数组 (顺序别搞反了,一定是先切中序数组) 第五步:切割后序数组,切成后序左数组和后序右数组 第六步:递归处理左区间和右区间

不难写出如下代码:(先把框架写出来)

TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {      // 第一步     if (postorder.size() == 0) return NULL;     // 第二步:后序遍历数组最后一个元素,就是当前的中间节点     int rootValue = postorder[postorder.size() - 1];     TreeNode* root = new TreeNode(rootValue);     // 叶子节点     if (postorder.size() == 1) return root;     // 第三步:找切割点     int delimiterIndex;     for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {          if (inorder[delimiterIndex] == rootValue) break;     }     // 第四步:切割中序数组,得到 中序左数组和中序右数组     // 第五步:切割后序数组,得到 后序左数组和后序右数组     // 第六步     root->left = traversal(中序左数组, 后序左数组);     root->right = traversal(中序右数组, 后序右数组);     return root; } 

难点大家应该发现了,就是如何切割,以及边界值找不好很容易乱套。

此时应该注意确定切割的标准,是左闭右开,还有左开又闭,还是左闭又闭,这个就是不变量,要在递归中保持这个不变量。

在切割的过程中会产生四个区间,把握不好不变量的话,一会左闭右开,一会左闭又闭,必然乱套!

我在704.二分查找和59.螺旋矩阵II中都强调过循环不变量的重要性,在二分查找以及螺旋矩阵的求解中,坚持循环不变量非常重要,服务器租用本题也是。

首先要切割中序数组,为什么先切割中序数组呢?

切割点在后序数组的最后一个元素,就是用这个元素来切割中序数组的,所以必要先切割中序数组。

中序数组相对比较好切,找到切割点(后序数组的最后一个元素)在中序数组的位置,然后切割,如下代码中我坚持左闭右开的原则:

// 找到中序遍历的切割点 int delimiterIndex; for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {      if (inorder[delimiterIndex] == rootValue) break; } // 左闭右开区间:[0, delimiterIndex) vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex); // [delimiterIndex + 1, end) vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() ); 

接下来就要切割后序数组了。

首先后序数组的最后一个元素指定不能要了,这是切割点 也是 当前二叉树中间节点的元素,已经用了。

后序数组的切割点怎么找?

后序数组没有明确的切割元素来进行左右切割,不像中序数组有明确的切割点,切割点左右分开就可以了。

此时有一个很重的点,就是网站模板中序数组大小一定是和后序数组的大小相同的(这是必然)。

中序数组我们都切成了左中序数组和右中序数组了,那么后序数组就可以按照左中序数组的大小来切割,切成左后序数组和右后序数组。

代码如下:

// postorder 舍弃末尾元素,因为这个元素就是中间节点,已经用过了 postorder.resize(postorder.size() - 1); // 左闭右开,注意这里使用了左中序数组大小作为切割点:[0, leftInorder.size) vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size()); // [leftInorder.size(), end) vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end()); 

此时,中序数组切成了左中序数组和右中序数组,后序数组切割成左后序数组和右后序数组。

接下来可以递归了,代码如下:

root->left = traversal(leftInorder, leftPostorder); root->right = traversal(rightInorder, rightPostorder); 

完整代码如下:

C++完整代码

class Solution {  private:     TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {          if (postorder.size() == 0) return NULL;         // 后序遍历数组最后一个元素,就是当前的中间节点         int rootValue = postorder[postorder.size() - 1];         TreeNode* root = new TreeNode(rootValue);         // 叶子节点         if (postorder.size() == 1) return root;         // 找到中序遍历的切割点         int delimiterIndex;         for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {              if (inorder[delimiterIndex] == rootValue) break;         }         // 切割中序数组         // 左闭右开区间:[0, delimiterIndex)         vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);         // [delimiterIndex + 1, end)         vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );         // postorder 舍弃末尾元素         postorder.resize(postorder.size() - 1);         // 切割后序数组         // 依然左闭右开,注意这里使用了左中序数组大小作为切割点         // [0, leftInorder.size)         vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());         // [leftInorder.size(), end)         vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());         root->left = traversal(leftInorder, leftPostorder);         root->right = traversal(rightInorder, rightPostorder);         return root;     } public:     TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {          if (inorder.size() == 0 || postorder.size() == 0) return NULL;         return traversal(inorder, postorder);     } }; 

相信大家自己就算是思路清晰, 代码写出来一定是各种问题,所以一定要加日志来调试,看看是不是按照自己思路来切割的,不要大脑模拟,那样越想越糊涂。

下面给出用下表索引写出的代码版本:(思路是一样的,只不过不用重复定义vector了,每次用下表索引来分割)

C++优化版本

那么这个版本写出来依然要打日志进行调试,打日志的版本如下:(该版本不要在leetcode上提交,容易超时)

class Solution {  private:     TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& postorder, int postorderBegin, int postorderEnd) {          if (postorderBegin == postorderEnd) return NULL;         int rootValue = postorder[postorderEnd - 1];         TreeNode* root = new TreeNode(rootValue);         if (postorderEnd - postorderBegin == 1) return root;         int delimiterIndex;         for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {              if (inorder[delimiterIndex] == rootValue) break;         }         // 切割中序数组         // 左中序区间,左闭右开[leftInorderBegin, leftInorderEnd)         int leftInorderBegin = inorderBegin;         int leftInorderEnd = delimiterIndex;         // 右中序区间,左闭右开[rightInorderBegin, rightInorderEnd)         int rightInorderBegin = delimiterIndex + 1;         int rightInorderEnd = inorderEnd;         // 切割后序数组         // 左后序区间,左闭右开[leftPostorderBegin, leftPostorderEnd)         int leftPostorderBegin =  postorderBegin;         int leftPostorderEnd = postorderBegin + delimiterIndex - inorderBegin; // 终止位置是 需要加上 中序区间的大小size         // 右后序区间,左闭右开[rightPostorderBegin, rightPostorderEnd)         int rightPostorderBegin = postorderBegin + (delimiterIndex - inorderBegin);         int rightPostorderEnd = postorderEnd - 1; // 排除最后一个元素,已经作为节点了         cout << "----------" << endl;         cout << "leftInorder :";         for (int i = leftInorderBegin; i < leftInorderEnd; i++) {              cout << inorder[i] << " ";         }         cout << endl;         cout << "rightInorder :";         for (int i = rightInorderBegin; i < rightInorderEnd; i++) {              cout << inorder[i] << " ";         }         cout << endl;         cout << "leftpostorder :";         for (int i = leftPostorderBegin; i < leftPostorderEnd; i++) {              cout << postorder[i] << " ";         }         cout << endl;         cout << "rightpostorder :";         for (int i = rightPostorderBegin; i < rightPostorderEnd; i++) {              cout << postorder[i] << " ";         }         cout << endl;         root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  postorder, leftPostorderBegin, leftPostorderEnd);         root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);         return root;     } public:     TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {          if (inorder.size() == 0 || postorder.size() == 0) return NULL;         return traversal(inorder, 0, inorder.size(), postorder, 0, postorder.size());     } }; 

从前序与中序遍历序列构造二叉树

题目地址:https://leetcode-cn.com/problems/construct-binary-tree-from-preorder-and-inorder-traversal/

根据一棵树的前序遍历与中序遍历构造二叉树。

注意: 你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7] 中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树:

从前序与中序遍历序列构造二叉树

思路

本题和106是一样的道理。

我就直接给出代码了。

class Solution {  private:         TreeNode* traversal (vector<int>& inorder, int inorderBegin, int inorderEnd, vector<int>& preorder, int preorderBegin, int preorderEnd) {          if (preorderBegin == preorderEnd) return NULL;         int rootValue = preorder[preorderBegin]; // 注意用preorderBegin 不要用0         TreeNode* root = new TreeNode(rootValue);         if (preorderEnd - preorderBegin == 1) return root;         int delimiterIndex;         for (delimiterIndex = inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++) {              if (inorder[delimiterIndex] == rootValue) break;         }         // 切割中序数组         // 中序左区间,左闭右开[leftInorderBegin, leftInorderEnd)         int leftInorderBegin = inorderBegin;         int leftInorderEnd = delimiterIndex;         // 中序右区间,左闭右开[rightInorderBegin, rightInorderEnd)         int rightInorderBegin = delimiterIndex + 1;         int rightInorderEnd = inorderEnd;         // 切割前序数组         // 前序左区间,左闭右开[leftPreorderBegin, leftPreorderEnd)         int leftPreorderBegin =  preorderBegin + 1;         int leftPreorderEnd = preorderBegin + 1 + delimiterIndex - inorderBegin; // 终止位置是起始位置加上中序左区间的大小size         // 前序右区间, 左闭右开[rightPreorderBegin, rightPreorderEnd)         int rightPreorderBegin = preorderBegin + 1 + (delimiterIndex - inorderBegin);         int rightPreorderEnd = preorderEnd;         root->left = traversal(inorder, leftInorderBegin, leftInorderEnd,  preorder, leftPreorderBegin, leftPreorderEnd);         root->right = traversal(inorder, rightInorderBegin, rightInorderEnd, preorder, rightPreorderBegin, rightPreorderEnd);         return root;     } public:     TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {          if (inorder.size() == 0 || preorder.size() == 0) return NULL;         // 参数坚持左闭右开的原则         return traversal(inorder, 0, inorder.size(), preorder, 0, preorder.size());     } }; 

思考题

前序和中序可以唯一确定一颗二叉树。

后序和中序可以唯一确定一颗二叉树。

那么前序和后序可不可以唯一确定一颗二叉树呢?

前序和后序不能唯一确定一颗二叉树!,因为没有中序遍历无法确定左右部分,也就是无法分割。

举一个例子:

从中序与后序遍历序列构造二叉树2

tree1 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

tree2 的前序遍历是[1 2 3], 后序遍历是[3 2 1]。

那么tree1 和 tree2 的前序和后序完全相同,这是一棵树么,很明显是两棵树!

所以前序和后序不能唯一确定一颗二叉树!

总结

之前我们讲的二叉树题目都是各种遍历二叉树,这次开始构造二叉树了,思路其实比较简单,但是真正代码实现出来并不容易。

所以要避免眼高手低,踏实的把代码写出来。

我同时给出了添加日志的代码版本,因为这种题目是不太容易写出来调一调就能过的,所以一定要把流程日志打出来,看看符不符合自己的思路。

大家遇到这种题目的时候,也要学会打日志来调试(如何打日志有时候也是个技术活),不要脑动模拟,脑动模拟很容易越想越乱。

最后我还给出了为什么前序和中序可以唯一确定一颗二叉树,后序和中序可以唯一确定一颗二叉树,而前序和后序却不行。

认真研究完本篇,相信大家对二叉树的构造会清晰很多。

其他语言版本

Java

从中序与后序遍历序列构造二叉树

class Solution {      public TreeNode buildTree(int[] inorder, int[] postorder) {          return buildTree1(inorder, 0, inorder.length, postorder, 0, postorder.length);     }     public TreeNode buildTree1(int[] inorder, int inLeft, int inRight,                                int[] postorder, int postLeft, int postRight) {          // 没有元素了         if (inRight - inLeft < 1) {              return null;         }         // 只有一个元素了         if (inRight - inLeft == 1) {              return new TreeNode(inorder[inLeft]);         }         // 后序数组postorder里最后一个即为根结点         int rootVal = postorder[postRight - 1];         TreeNode root = new TreeNode(rootVal);         int rootIndex = 0;         // 根据根结点的值找到该值在中序数组inorder里的位置         for (int i = inLeft; i < inRight; i++) {              if (inorder[i] == rootVal) {                  rootIndex = i;             }         }         // 根据rootIndex划分左右子树         root.left = buildTree1(inorder, inLeft, rootIndex,                 postorder, postLeft, postLeft + (rootIndex - inLeft));         root.right = buildTree1(inorder, rootIndex + 1, inRight,                 postorder, postLeft + (rootIndex - inLeft), postRight - 1);         return root;     } } 

从前序与中序遍历序列构造二叉树

class Solution {      public TreeNode buildTree(int[] preorder, int[] inorder) {          return helper(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);     }     public TreeNode helper(int[] preorder, int preLeft, int preRight,                            int[] inorder, int inLeft, int inRight) {          // 递归终止条件         if (inLeft > inRight || preLeft > preRight) return null;         // val 为前序遍历第一个的值,也即是根节点的值         // idx 为根据根节点的值来找中序遍历的下标         int idx = inLeft, val = preorder[preLeft];         TreeNode root = new TreeNode(val);         for (int i = inLeft; i <= inRight; i++) {              if (inorder[i] == val) {                  idx = i;                 break;             }         }         // 根据 idx 来递归找左右子树         root.left = helper(preorder, preLeft + 1, preLeft + (idx - inLeft),                          inorder, inLeft, idx - 1);         root.right = helper(preorder, preLeft + (idx - inLeft) + 1, preRight,                          inorder, idx + 1, inRight);         return root;     } } 

Python

从前序与中序遍历序列构造二叉树

class Solution:     def buildTree(self, preorder: List[int], inorder: List[int]) -> TreeNode:         # 第一步: 特殊情况讨论: 树为空. 或者说是递归终止条件         if not preorder:             return None         # 第二步: 前序遍历的第一个就是当前的中间节点.         root_val = preorder[0]         root = TreeNode(root_val)         # 第三步: 找切割点.         separator_idx = inorder.index(root_val)         # 第四步: 切割inorder数组. 得到inorder数组的左,右半边.         inorder_left = inorder[:separator_idx]         inorder_right = inorder[separator_idx + 1:]         # 第五步: 切割preorder数组. 得到preorder数组的左,右半边.         # ⭐️ 重点1: 中序数组大小一定跟前序数组大小是相同的.         preorder_left = preorder[1:1 + len(inorder_left)]         preorder_right = preorder[1 + len(inorder_left):]         # 第六步: 递归         root.left = self.buildTree(preorder_left, inorder_left)         root.right = self.buildTree(preorder_right, inorder_right)         return root 

从中序与后序遍历序列构造二叉树

class Solution:     def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:         # 第一步: 特殊情况讨论: 树为空. (递归终止条件)         if not postorder:             return None         # 第二步: 后序遍历的最后一个就是当前的中间节点.         root_val = postorder[-1]         root = TreeNode(root_val)         # 第三步: 找切割点.         separator_idx = inorder.index(root_val)         # 第四步: 切割inorder数组. 得到inorder数组的左,右半边.         inorder_left = inorder[:separator_idx]         inorder_right = inorder[separator_idx + 1:]         # 第五步: 切割postorder数组. 得到postorder数组的左,右半边.         # ⭐️ 重点1: 中序数组大小一定跟后序数组大小是相同的.         postorder_left = postorder[:len(inorder_left)]         postorder_right = postorder[len(inorder_left): len(postorder) - 1]         # 第六步: 递归         root.left = self.buildTree(inorder_left, postorder_left)         root.right = self.buildTree(inorder_right, postorder_right)         return root 
copyright © 2025 powered by 益强资讯全景  滇ICP备2023006006号-31sitemap