本文转载自微信公众号「肌肉码农」,篇学作者肌肉码农。码分转载本文请联系肌肉码农公众号。篇学
Caffeine使用一个ConcurrencyHashMap来保存所有数据,码分那它的篇学过期淘汰策略采用什么方式与数据结构呢?其中写过期是使用writeOrderDeque,这个比较简单无需多说,而读过期相对复杂很多,码分使用W-TinyLFU的篇学结构与算法。
网络上有很多文章介绍W-TinyLFU结构的码分,大家可以去查一下,篇学这里主要是码分从源码来分析,总的篇学来说它使用了三个双端队列:accessOrderEdenDeque,accessOrderProbationDeque,accessOrderProtectedDeque,使用双端队列的原因是支持LRU算法比较方便。
accessOrderEdenDeque属于eden区,码分缓存1%的篇学数据,其余的码分99%缓存在main区。
accessOrderProbationDeque属于main区,篇学缓存main内数据的20%,这部分是属于冷数据,即将补淘汰。
accessOrderProtectedDeque属于main区,缓存main内数据的80%,这部分是网站模板属于热数据,是整个缓存的主存区。
我们先看一下淘汰方法入口:
void evictEntries() { if (!evicts()) { return; } //先从edn区淘汰 int candidates = evictFromEden(); //eden淘汰后的数据进入main区,然后再从main区淘汰 evictFromMain(candidates); }accessOrderEdenDeque对应W-TinyLFU的W(window),这里保存的是最新写入数据的引用,它使用LRU淘汰,这里面的数据主要是应对突发流量的问题,淘汰后的数据进入accessOrderProbationDeque.代码如下:
int evictFromEden() { int candidates = 0; Node<K, V> node = accessOrderEdenDeque().peek(); while (edenWeightedSize() > edenMaximum()) { // The pending operations will adjust the size to reflect the correct weight if (node == null) { break; } Node<K, V> next = node.getNextInAccessOrder(); if (node.getWeight() != 0) { node.makeMainProbation(); //先从eden区移除 accessOrderEdenDeque().remove(node); //移除的数据加入到main区的probation队列 accessOrderProbationDeque().add(node); candidates++; lazySetEdenWeightedSize(edenWeightedSize() - node.getPolicyWeight()); } node = next; } return candidates; }数据进入probation队列后,继续执行以下代码:
void evictFromMain(int candidates) { int victimQueue = PROBATION; Node<K, V> victim = accessOrderProbationDeque().peekFirst(); Node<K, V> candidate = accessOrderProbationDeque().peekLast(); while (weightedSize() > maximum()) { // Stop trying to evict candidates and always prefer the victim if (candidates == 0) { candidate = null; } // Try evicting from the protected and eden queues if ((candidate == null) && (victim == null)) { if (victimQueue == PROBATION) { victim = accessOrderProtectedDeque().peekFirst(); victimQueue = PROTECTED; continue; } else if (victimQueue == PROTECTED) { victim = accessOrderEdenDeque().peekFirst(); victimQueue = EDEN; continue; } // The pending operations will adjust the size to reflect the correct weight break; } // Skip over entries with zero weight if ((victim != null) && (victim.getPolicyWeight() == 0)) { victim = victim.getNextInAccessOrder(); continue; } else if ((candidate != null) && (candidate.getPolicyWeight() == 0)) { candidate = candidate.getPreviousInAccessOrder(); candidates--; continue; } // Evict immediately if only one of the entries is present if (victim == null) { candidates--; Node<K, V> evict = candidate; candidate = candidate.getPreviousInAccessOrder(); evictEntry(evict, RemovalCause.SIZE, 0L); continue; } else if (candidate == null) { Node<K, V> evict = victim; victim = victim.getNextInAccessOrder(); evictEntry(evict, RemovalCause.SIZE, 0L); continue; } // Evict immediately if an entry was collected K victimKey = victim.getKey(); K candidateKey = candidate.getKey(); if (victimKey == null) { Node<K, V> evict = victim; victim = victim.getNextInAccessOrder(); evictEntry(evict, RemovalCause.COLLECTED, 0L); continue; } else if (candidateKey == null) { candidates--; Node<K, V> evict = candidate; candidate = candidate.getPreviousInAccessOrder(); evictEntry(evict, RemovalCause.COLLECTED, 0L); continue; } // Evict immediately if the candidates weight exceeds the maximum if (candidate.getPolicyWeight() > maximum()) { candidates--; Node<K, V> evict = candidate; candidate = candidate.getPreviousInAccessOrder(); evictEntry(evict, RemovalCause.SIZE, 0L); continue; } // Evict the entry with the lowest frequency candidates--; //最核心算法在这里:从probation的头尾取出两个node进行比较频率,频率更小者将被remove if (admit(candidateKey, victimKey)) { Node<K, V> evict = victim; victim = victim.getNextInAccessOrder(); evictEntry(evict, RemovalCause.SIZE, 0L); candidate = candidate.getPreviousInAccessOrder(); } else { Node<K, V> evict = candidate; candidate = candidate.getPreviousInAccessOrder(); evictEntry(evict, RemovalCause.SIZE, 0L); } } }上面的代码逻辑是从probation的头尾取出两个node进行比较频率,频率更小者将被remove,其中尾部元素就是上一部分从eden中淘汰出来的元素,如果将两步逻辑合并起来讲是这样的亿华云:在eden队列通过lru淘汰出来的”候选者“与probation队列通过lru淘汰出来的“被驱逐者“进行频率比较,失败者将被从cache中真正移除。下面看一下它的比较逻辑admit:
boolean admit(K candidateKey, K victimKey) { int victimFreq = frequencySketch().frequency(victimKey); int candidateFreq = frequencySketch().frequency(candidateKey); //如果候选者的频率高就淘汰被驱逐者 if (candidateFreq > victimFreq) { return true; //如果被驱逐者比候选者的频率高,并且候选者频率小于等于5则淘汰者 } else if (candidateFreq <= 5) { // The maximum frequency is 15 and halved to 7 after a reset to age the history. An attack // exploits that a hot candidate is rejected in favor of a hot victim. The threshold of a warm // candidate reduces the number of random acceptances to minimize the impact on the hit rate. return false; } //随机淘汰 int random = ThreadLocalRandom.current().nextInt(); return ((random & 127) == 0); }从frequencySketch取出候选者与被驱逐者的频率,如果候选者的频率高就淘汰被驱逐者,如果被驱逐者比候选者的频率高,并且候选者频率小于等于5则淘汰者,如果前面两个条件都不满足则随机淘汰。
整个过程中你是不是发现protectedDeque并没有什么作用,那它是怎么作为主存区来保存大部分数据的呢?
//onAccess方法触发该方法 void reorderProbation(Node<K, V> node) { if (!accessOrderProbationDeque().contains(node)) { // Ignore stale accesses for an entry that is no longer present return; } else if (node.getPolicyWeight() > mainProtectedMaximum()) { return; } long mainProtectedWeightedSize = mainProtectedWeightedSize() + node.getPolicyWeight(); //先从probation中移除 accessOrderProbationDeque().remove(node); //加入到protected中 accessOrderProtectedDeque().add(node); node.makeMainProtected(); long mainProtectedMaximum = mainProtectedMaximum(); //从protected中移除 while (mainProtectedWeightedSize > mainProtectedMaximum) { Node<K, V> demoted = accessOrderProtectedDeque().pollFirst(); if (demoted == null) { break; } demoted.makeMainProbation(); //加入到probation中 accessOrderProbationDeque().add(demoted); mainProtectedWeightedSize -= node.getPolicyWeight(); } lazySetMainProtectedWeightedSize(mainProtectedWeightedSize); }当数据被访问时并且该数据在probation中,这个数据就会移动到protected中去,同时通过lru从protected中淘汰一个数据进入到probation中。
这样数据流转的逻辑全部通了:新数据都会进入到eden中,通过lru淘汰到probation,并与probation中通过lru淘汰的数据进行使用频率pk,如果胜利了就继续留在probation中,如果失败了就会被直接淘汰,当这条数据被访问了,则移动到protected。当其它数据被访问了,则它可能会从protected中通过lru淘汰到probation中。云南idc服务商
传统LFU一般使用key-value形式来记录每个key的频率,优点是数据结构非常简单,并且能跟缓存本身的数据结构复用,增加一个属性记录频率就行了,它的缺点也比较明显就是频率这个属性会占用很大的空间,但如果改用压缩方式存储频率呢? 频率占用空间肯定可以减少,但会引出另外一个问题:怎么从压缩后的数据里获得对应key的频率呢?
TinyLFU的解决方案是类似位图的方法,将key取hash值获得它的位下标,然后用这个下标来找频率,但位图只有0、1两个值,那频率明显可能会非常大,这要怎么处理呢? 另外使用位图需要预占非常大的空间,这个问题怎么解决呢?
TinyLFU根据最大数据量设置生成一个long数组,然后将频率值保存在其中的四个long的4个bit位中(4个bit位不会大于15),取频率值时则取四个中的最小一个。
Caffeine认为频率大于15已经很高了,是属于热数据,所以它只需要4个bit位来保存,long有8个字节64位,这样可以保存16个频率。取hash值的后左移两位,然后加上hash四次,这样可以利用到16个中的13个,利用率挺高的,或许有更好的算法能将16个都利用到。
public void increment(@Nonnull E e) { if (isNotInitialized()) { return; } int hash = spread(e.hashCode()); int start = (hash & 3) << 2; // Loop unrolling improves throughput by 5m ops/s int index0 = indexOf(hash, 0); //indexOf也是一种hash方法,不过会通过tableMask来限制范围 int index1 = indexOf(hash, 1); int index2 = indexOf(hash, 2); int index3 = indexOf(hash, 3); boolean added = incrementAt(index0, start); added |= incrementAt(index1, start + 1); added |= incrementAt(index2, start + 2); added |= incrementAt(index3, start + 3); //当数据写入次数达到数据长度时就重置 if (added && (++size == sampleSize)) { reset(); } }给对应位置的bit位四位的Int值加1:
boolean incrementAt(int i, int j) { int offset = j << 2; long mask = (0xfL << offset); //当已达到15时,次数不再增加 if ((table[i] & mask) != mask) { table[i] += (1L << offset); return true; } return false; }获得值的方法也是通过四次hash来获得,然后取最小值:
public int frequency(@Nonnull E e) { if (isNotInitialized()) { return 0; } int hash = spread(e.hashCode()); int start = (hash & 3) << 2; int frequency = Integer.MAX_VALUE; //四次hash for (int i = 0; i < 4; i++) { int index = indexOf(hash, i); //获得bit位四位的Int值 int count = (int) ((table[index] >>> ((start + i) << 2)) & 0xfL); //取最小值 frequency = Math.min(frequency, count); } return frequency; }当数据写入次数达到数据长度时就会将次数减半,一些冷数据在这个过程中将归0,这样会使hash冲突降低:
void reset() { int count = 0; for (int i = 0; i < table.length; i++) { count += Long.bitCount(table[i] & ONE_MASK); table[i] = (table[i] >>> 1) & RESET_MASK; } size = (size >>> 1) - (count >>> 2); }