一、基于解内容分析
接下来创建一个爬虫项目,虫入以 图虫网 为例抓取里面的门代码详图片。在顶部菜单“发现” “标签”里面是基于解对各种图片的分类,点击一个标签,虫入比如“美女”,门代码详网页的基于解链接为:https://tuchong.com/tags/美女/,我们以此作为爬虫入口,虫入分析一下该页面:
打开页面后出现一个个的门代码详图集,点击图集可全屏浏览图片,基于解向下滚动页面会出现更多的虫入图集,没有页码翻页的门代码详设置。Chrome右键“检查元素”打开开发者工具,基于解检查页面源码,虫入内容部分如下:
<div class="content"> <div class="widget-gallery"> <ul class="pagelist-wrapper"> <li class="gallery-item...可以判断每一个li.gallery-item是门代码详一个图集的入口,存放在ul.pagelist-wrapper下,div.widget-gallery是一个容器,如果使用 xpath 选取应该是://div[@class=”widget-gallery”]/ul/li,按照一般页面的逻辑,在li.gallery-item下面找到对应的链接地址,再往下深入一层页面抓取图片。亿华云
但是如果用类似 Postman 的HTTP调试工具请求该页面,得到的内容是:
<div class="content"> <div class="widget-gallery"></div> </div>也就是并没有实际的图集内容,因此可以断定页面使用了Ajax请求,只有在浏览器载入页面时才会请求图集内容并加入div.widget-gallery中,通过开发者工具查看XHR请求地址为:
https://tuchong.com/rest/tags/美女/posts?page=1&count=20&order=weekly&before_timestamp=参数很简单,page是页码,count是每页图集数量,order是排序,before_timestamp为空,图虫因为是推送内容式的网站,因此before_timestamp应该是一个时间值,不同的时间会显示不同的内容,这里我们把它丢弃,不考虑时间直接从***的页面向前抓取。
请求结果为JSON格式内容,降低了抓取难度,结果如下:
{ "postList": [ { "post_id": "15624611", "type": "multi-photo", "url": "https://weishexi.tuchong.com/15624611/", "site_id": "443122", "author_id": "443122", "published_at": "2017-10-28 18:01:03", "excerpt": "10月18日", "favorites": 4052, "comments": 353, "rewardable": true, "parent_comments": "165", "rewards": "2", "views": 52709, "title": "微风不燥 秋意正好", "image_count": 15, "images": [ { "img_id": 11585752, "user_id": 443122, "title": "", "excerpt": "", "width": 5016, "height": 3840 }, { "img_id": 11585737, "user_id": 443122, "title": "", "excerpt": "", "width": 3840, "height": 5760 }, ... ], "title_image": null, "tags": [ { "tag_id": 131, "type": "subject", "tag_name": "人像", "event_type": "", "vote": "" }, { "tag_id": 564, "type": "subject", "tag_name": "美女", "event_type": "", "vote": "" } ], "favorite_list_prefix": [], "reward_list_prefix": [], "comment_list_prefix": [], "cover_image_src": "https://photo.tuchong.com/443122/g/11585752.webp", "is_favorite": false } ], "siteList": { ...}, "following": false, "coverUrl": "https://photo.tuchong.com/443122/ft640/11585752.webp", "tag_name": "美女", "tag_id": "564", "url": "https://tuchong.com/tags/%E7%BE%8E%E5%A5%B3/", "more": true, "result": "SUCCESS" }根据属性名称很容易知道对应的内容含义,高防服务器这里我们只需关心 postlist 这个属性,它对应的一个数组元素便是一个图集,图集元素中有几项属性我们需要用到:
url:单个图集浏览的页面地址 post_id:图集编号,在网站中应该是唯一的,可以用来判断是否已经抓取过该内容 site_id:作者站点编号 ,构建图片来源链接要用到 title:标题 excerpt:摘要文字 type:图集类型,目前发现两种,一种multi-photo是纯照片,一种text是文字与图片混合的文章式页面,两种内容结构不同,需要不同的抓取方式,本例中只抓取纯照片类型,text类型直接丢弃 tags:图集标签,有多个 image_count:图片数量 images:图片列表,它是一个对象数组,每个对象中包含一个img_id属性需要用到根据图片浏览页面分析,基本上图片的地址都是这种格式: https://photo.tuchong.com/{ site_id}/f/{ img_id}.jpg ,很容易通过上面的信息合成。
二、源码库创建项目
进入cmder命令行工具,输入workon scrapy 进入之前建立的虚拟环境,此时命令行提示符前会出现(Scrapy) 标识,标识处于该虚拟环境中,相关的路径都会添加到PATH环境变量中便于开发及使用。 输入 scrapy startproject tuchong 创建项目 tuchong 进入项目主目录,输入 scrapy genspider photo tuchong.com 创建一个爬虫名称叫 photo (不能与项目同名),爬取 tuchong.com 域名(这个需要修改,此处先输个大概地址),的一个项目内可以包含多个爬虫经过以上步骤,项目自动建立了一些文件及设置,目录结构如下:
(PROJECT) │ scrapy.cfg │ └─tuchong │ items.py │ middlewares.py │ pipelines.py │ settings.py │ __init__.py │ ├─spiders │ │ photo.py │ │ __init__.py │ │ │ └─__pycache__ │ __init__.cpython-36.pyc │ └─__pycache__ settings.cpython-36.pyc __init__.cpython-36.pyc scrapy.cfg:基础设置 items.py:抓取条目的结构定义 middlewares.py:中间件定义,此例中无需改动 pipelines.py:管道定义,用于抓取数据后的处理 settings.py:全局设置 spiders\photo.py:爬虫主体,定义如何抓取需要的数据三、主要代码
items.py 中创建一个TuchongItem类并定义需要的属性,属性继承自 scrapy.Field 值可以是字符、数字或者列表或字典等等:
import scrapy class TuchongItem(scrapy.Item): post_id = scrapy.Field() site_id = scrapy.Field() title = scrapy.Field() type = scrapy.Field() url = scrapy.Field() image_count = scrapy.Field() images = scrapy.Field() tags = scrapy.Field() excerpt = scrapy.Field() ...这些属性的值将在爬虫主体中赋予。
spiders\photo.py 这个文件是通过命令 scrapy genspider photo tuchong.com 自动创建的,里面的初始内容如下:
import scrapy class PhotoSpider(scrapy.Spider): name = photo allowed_domains = [tuchong.com] start_urls = [http://tuchong.com/] def parse(self, response): pass爬虫名 name,允许的域名 allowed_domains(如果链接不属于此域名将丢弃,允许多个) ,起始地址 start_urls 将从这里定义的地址抓取(允许多个)
函数 parse 是处理请求内容的默认回调函数,参数 response 为请求内容,页面内容文本保存在 response.body 中,我们需要对默认代码稍加修改,让其满足多页面循环发送请求,这需要重载 start_requests 函数,通过循环语句构建多页的链接请求,修改后代码如下:
import scrapy, json from ..items import TuchongItem class PhotoSpider(scrapy.Spider): name = photo # allowed_domains = [tuchong.com] # start_urls = [http://tuchong.com/] def start_requests(self): url = https://tuchong.com/rest/tags/%s/posts?page=%d&count=20&order=weekly; # 抓取10个页面,每页20个图集 # 指定 parse 作为回调函数并返回 Requests 请求对象 for page in range(1, 11): yield scrapy.Request(url=url % (美女, page), callback=self.parse) # 回调函数,处理抓取内容填充 TuchongItem 属性 def parse(self, response): body = json.loads(response.body_as_unicode()) items = [] for post in body[postList]: item = TuchongItem() item[type] = post[type] item[post_id] = post[post_id] item[site_id] = post[site_id] item[title] = post[title] item[url] = post[url] item[excerpt] = post[excerpt] item[image_count] = int(post[image_count]) item[images] = { } # 将 images 处理成 { img_id: img_url} 对象数组 for img in post.get(images, ): img_id = img[img_id] url = https://photo.tuchong.com/%s/f/%s.jpg % (item[site_id], img_id) item[images][img_id] = url item[tags] = [] # 将 tags 处理成 tag_name 数组 for tag in post.get(tags, ): item[tags].append(tag[tag_name]) items.append(item) return items经过这些步骤,抓取的数据将被保存在 TuchongItem 类中,作为结构化的数据便于处理及保存。
前面说过,并不是所有抓取的条目都需要,例如本例中我们只需要 type=”multi_photo 类型的图集,并且图片太少的也不需要,这些抓取条目的筛选操作以及如何保存需要在pipelines.py中处理,该文件中默认已创建类 TuchongPipeline 并重载了 process_item函数,通过修改该函数只返回那些符合条件的 item,代码如下:
import scrapy, json from ..items import TuchongItem class PhotoSpider(scrapy.Spider): name = photo # allowed_domains = [tuchong.com] # start_urls = [http://tuchong.com/] def start_requests(self): url = https://tuchong.com/rest/tags/%s/posts?page=%d&count=20&order=weekly; # 抓取10个页面,每页20个图集 # 指定 parse 作为回调函数并返回 Requests 请求对象 for page in range(1, 11): yield scrapy.Request(url=url % (美女, page), callback=self.parse) # 回调函数,处理抓取内容填充 TuchongItem 属性 def parse(self, response): body = json.loads(response.body_as_unicode()) items = [] for post in body[postList]: item = TuchongItem() item[type] = post[type] item[post_id] = post[post_id] item[site_id] = post[site_id] item[title] = post[title] item[url] = post[url] item[excerpt] = post[excerpt] item[image_count] = int(post[image_count]) item[images] = { } # 将 images 处理成 { img_id: img_url} 对象数组 for img in post.get(images, ): img_id = img[img_id] url = https://photo.tuchong.com/%s/f/%s.jpg % (item[site_id], img_id) item[images][img_id] = url item[tags] = [] # 将 tags 处理成 tag_name 数组 for tag in post.get(tags, ): item[tags].append(tag[tag_name]) items.append(item) return items当然如果不用管道直接在 parse 中处理也是一样的,只不过这样结构更清晰一些,而且还有功能更多的FilePipelines和ImagePipelines可供使用,process_item将在每一个条目抓取后触发,同时还有 open_spider 及 close_spider 函数可以重载,用于处理爬虫打开及关闭时的动作。
注意:管道需要在项目中注册才能使用,在 settings.py 中添加:
ITEM_PIPELINES = { tuchong.pipelines.TuchongPipeline: 300, # 管道名称: 运行优先级(数字小优先) }另外,大多数网站都有反爬虫的 Robots.txt 排除协议,设置 ROBOTSTXT_OBEY = True 可以忽略这些协议,是的,这好像只是个君子协定。如果网站设置了浏览器User Agent或者IP地址检测来反爬虫,那就需要更高级的Scrapy功能,本文不做讲解。
四、运行
返回 cmder 命令行进入项目目录,输入命令:
scrapy crawl photo终端会输出所有的爬行结果及调试信息,并在***列出爬虫运行的统计信息,例如:
[scrapy.statscollectors] INFO: Dumping Scrapy stats: { downloader/request_bytes: 491, downloader/request_count: 2, downloader/request_method_count/GET: 2, downloader/response_bytes: 10224, downloader/response_count: 2, downloader/response_status_count/200: 2, finish_reason: finished, finish_time: datetime.datetime(2017, 11, 27, 7, 20, 24, 414201), item_dropped_count: 5, item_dropped_reasons_count/DropItem: 5, item_scraped_count: 15, log_count/DEBUG: 18, log_count/INFO: 8, log_count/WARNING: 5, response_received_count: 2, scheduler/dequeued: 1, scheduler/dequeued/memory: 1, scheduler/enqueued: 1, scheduler/enqueued/memory: 1, start_time: datetime.datetime(2017, 11, 27, 7, 20, 23, 867300)}主要关注ERROR及WARNING两项,这里的 Warning 其实是不符合条件而触发的 DropItem 异常。
五、保存结果
大多数情况下都需要对抓取的结果进行保存,默认情况下 item.py 中定义的属性可以保存到文件中,只需要命令行加参数 -o { filename} 即可:
scrapy crawl photo -o output.json # 输出为JSON文件 scrapy crawl photo -o output.csv # 输出为CSV文件注意:输出至文件中的项目是未经过 TuchongPipeline 筛选的项目,只要在 parse 函数中返回的 Item 都会输出,因此也可以在 parse 中过滤只返回需要的项目
如果需要保存至数据库,则需要添加额外代码处理,比如可以在 pipelines.py 中 process_item 后添加:
... def process_item(self, item, spider): ... else: print(item[url]) self.myblog.add_post(item) # myblog 是一个数据库类,用于处理数据库操作 return item ...为了在插入数据库操作中排除重复的内容,可以使用 item[‘post_id’] 进行判断,如果存在则跳过。