最近,超过弗吉尼亚理工博士Amirsina Torfi在GitHub上贡献了一个新的教程简洁教程,教程清晰简单,清晰喜提2600颗星~
Torfi小哥一上来,太难就把GitHub上的超过其他TensorFlow教程批判了一番:
你们啊,都是教程简洁为做而做,分享的清晰教程都各种跳入跳出,要么搞的太难特别复杂,要么没什么文档支撑。高防服务器超过
搞这些大家都不看的教程简洁教程有什么用?既不能帮助开发人员搬砖,也不能帮助研究人员搞科研,清晰浪费这时间干嘛?太难
所以,Torfi小哥决心做一个内容完整、超过又不会复杂到坑爹的教程简洁TensorFlow教程。
这套教程包含清晰的教程文档,介绍从如何安装TensorFlow到TensorFlow的基础知识,香港云服务器线性回归模型等基本的机器学习方法,神经网络的基本教程及代码。
针对每一个部分,这份教程都包含了教程文档:
代码:
以及包含注释的代码笔记:
而且,开头还有手把手的安装视频。
· 如何安装TensorFlow· 热身:测试和运行
· 基础知识基础数学运算TensorFlow变量
· 基本机器学习线性回归逻辑回归线性SVMMultiClass内核SVM
教程地址:
https://github.com/open-source-for-science/TensorFlow-Course#why-use-tensorflow
另外,作者还推荐了其他一些他认可的TensorFlow教程资料:
TensorFlow-Examples
对初学者友好
https://github.com/aymericdamien/TensorFlow-Examples
Tensorflow-101
用Jupyter Notebook编写
https://github.com/sjchoi86/Tensorflow-101
TensorFlow_Exercises
从其他TensorFlow示例重新创建代码
https://github.com/terryum/TensorFlow_Exercises
LSTM-Human-Activity-Recognition
基于LSTM的TensorFlow在手机传感器数据上的网站模板递归神经网络分类
https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition